1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787 | """Class that benchmarks Scandinavian language models."""
import json
import logging
import re
import sys
import typing as t
from copy import deepcopy
from pathlib import Path
from shutil import rmtree
from time import sleep
from torch.distributed import destroy_process_group
from .benchmark_config_factory import build_benchmark_config
from .constants import GENERATIVE_PIPELINE_TAGS
from .data_loading import load_data
from .data_models import BenchmarkConfigParams, BenchmarkResult
from .dataset_configs import get_all_dataset_configs
from .enums import Device, ModelType
from .exceptions import InvalidBenchmark, InvalidModel
from .finetuning import finetune
from .generation import generate
from .model_config import get_model_config
from .model_loading import load_model
from .scores import log_scores
from .speed_benchmark import benchmark_speed
from .tasks import SPEED
from .utils import enforce_reproducibility
if t.TYPE_CHECKING:
from .benchmark_modules import BenchmarkModule
from .data_models import BenchmarkConfig, DatasetConfig, ModelConfig
logger = logging.getLogger("scandeval")
class Benchmarker:
"""Benchmarking all the Scandinavian language models.
Attributes:
benchmark_config_default_params:
The default parameters for the benchmark configuration.
benchmark_config:
The benchmark configuration.
force:
Whether to force evaluations of models, even if they have been benchmarked
already.
results_path:
The path to the results file.
benchmark_results:
The benchmark results.
"""
def __init__(
self,
progress_bar: bool = True,
save_results: bool = True,
task: str | list[str] | None = None,
dataset: list[str] | str | None = None,
language: str | list[str] = "all",
model_language: str | list[str] | None = None,
dataset_language: str | list[str] | None = None,
device: Device | None = None,
batch_size: int = 32,
raise_errors: bool = False,
cache_dir: str = ".scandeval_cache",
api_key: str | None = None,
force: bool = False,
verbose: bool = False,
trust_remote_code: bool = False,
use_flash_attention: bool | None = None,
clear_model_cache: bool = False,
evaluate_test_split: bool = False,
few_shot: bool = True,
num_iterations: int = 10,
api_base: str | None = None,
api_version: str | None = None,
debug: bool = False,
run_with_cli: bool = False,
only_allow_safetensors: bool = False,
) -> None:
"""Initialise the benchmarker.
Args:
progress_bar:
Whether progress bars should be shown. Defaults to True.
save_results:
Whether to save the benchmark results to
'scandeval_benchmark_results.jsonl'. Defaults to True.
task:
The tasks benchmark the model(s) on. Mutually exclusive with `dataset`.
If both `task` and `dataset` are None then all datasets will be
benchmarked.
dataset:
The datasets to benchmark on. Mutually exclusive with `task`. If both
`task` and `dataset` are None then all datasets will be benchmarked.
language:
The language codes of the languages to include, both for models and
datasets. Set this to 'all' if all languages should be considered.
Defaults to "all".
model_language:
The language codes of the languages to include for models. If specified
then this overrides the `language` parameter for model languages.
Defaults to None.
dataset_language:
The language codes of the languages to include for datasets. If
specified then this overrides the `language` parameter for dataset
languages. Defaults to None.
device:
The device to use for benchmarking. Defaults to None.
batch_size:
The batch size to use. Defaults to 32.
raise_errors:
Whether to raise errors instead of skipping the model evaluation.
Defaults to False.
cache_dir:
Directory to store cached models. Defaults to '.scandeval_cache'.
api_key:
The API key to use for a given inference API.
force:
Whether to force evaluations of models, even if they have been
benchmarked already. Defaults to False.
verbose:
Whether to output additional output. This is automatically set if
`debug` is True. Defaults to False.
trust_remote_code:
Whether to trust remote code when loading models. Defaults to False.
use_flash_attention:
Whether to use Flash Attention. If None then it will be used if it is
installed and the model is a decoder model. Defaults to None.
clear_model_cache:
Whether to clear the model cache after benchmarking each model.
Defaults to False.
evaluate_test_split:
Whether to evaluate the test split of the datasets. Defaults to False.
few_shot:
Whether to only evaluate the model using few-shot evaluation. Only
relevant if the model is generative. Defaults to True.
num_iterations:
The number of times each model should be evaluated. This is only meant
to be used for power users, and scores will not be allowed on the
leaderboards if this is changed. Defaults to 10.
api_base:
The base URL for a given inference API. Only relevant if `model` refers
to a model on an inference API. Defaults to None.
api_version:
The version of the API to use. Defaults to None.
debug:
Whether to output debug information. Defaults to False.
run_with_cli:
Whether the benchmarker is being run from the command-line interface.
Defaults to False.
only_allow_safetensors:
Whether to only allow models that use the safetensors format. Defaults to
False.
Raises:
ValueError:
If both `task` and `dataset` are specified.
"""
if task is not None and dataset is not None:
raise ValueError("Only one of `task` and `dataset` can be specified.")
self.benchmark_config_default_params = BenchmarkConfigParams(
progress_bar=progress_bar,
save_results=save_results,
task=task,
dataset=dataset,
language=language,
model_language=model_language,
dataset_language=dataset_language,
device=device,
batch_size=batch_size,
raise_errors=raise_errors,
cache_dir=cache_dir,
api_key=api_key,
force=force,
verbose=verbose,
trust_remote_code=trust_remote_code,
use_flash_attention=use_flash_attention,
clear_model_cache=clear_model_cache,
evaluate_test_split=evaluate_test_split,
few_shot=few_shot,
num_iterations=num_iterations,
api_base=api_base,
api_version=api_version,
debug=debug,
run_with_cli=run_with_cli,
only_allow_safetensors=only_allow_safetensors,
)
self.benchmark_config = build_benchmark_config(
first_time=True, **self.benchmark_config_default_params.model_dump()
)
# Initialise variable storing model lists, so we only have to fetch it once
self._model_lists: dict[str, list[str]] | None = None
self.results_path = Path.cwd() / "scandeval_benchmark_results.jsonl"
adjust_logging_level(verbose=self.benchmark_config.verbose)
@property
def benchmark_results(self) -> list[BenchmarkResult]:
"""The benchmark results."""
if self.results_path.exists():
with self.results_path.open() as f:
return [
BenchmarkResult.from_dict(json.loads(line))
for line in f
if line.strip()
]
else:
return list()
def benchmark(
self,
model: list[str] | str,
task: str | list[str] | None = None,
dataset: list[str] | str | None = None,
progress_bar: bool | None = None,
save_results: bool | None = None,
language: str | list[str] | None = None,
model_language: str | list[str] | None = None,
dataset_language: str | list[str] | None = None,
device: Device | None = None,
batch_size: int | None = None,
raise_errors: bool | None = None,
cache_dir: str | None = None,
api_key: str | None = None,
force: bool | None = None,
verbose: bool | None = None,
trust_remote_code: bool | None = None,
use_flash_attention: bool | None = None,
clear_model_cache: bool | None = None,
evaluate_test_split: bool | None = None,
few_shot: bool | None = None,
num_iterations: int | None = None,
only_allow_safetensors: bool | None = None,
) -> list[BenchmarkResult]:
"""Benchmarks models on datasets.
Args:
model:
The full Hugging Face Hub path(s) to the pretrained transformer model.
The specific model version to use can be added after the suffix '@':
"model@v1.0.0". It can be a branch name, a tag name, or a commit id,
and defaults to the latest version if not specified.
task:
The tasks benchmark the model(s) on. Mutually exclusive with `dataset`.
If both `task` and `dataset` are None then all datasets will be
benchmarked. Defaults to None.
dataset:
The datasets to benchmark on. Mutually exclusive with `task`. If both
`task` and `dataset` are None then all datasets will be benchmarked.
Defaults to None.
progress_bar:
Whether progress bars should be shown. Defaults to the value specified
when initialising the benchmarker.
save_results:
Whether to save the benchmark results to
'scandeval_benchmark_results.jsonl'. Defaults to the value specified
when initialising the benchmarker.
language:
The language codes of the languages to include, both for models and
datasets. Here 'no' means both Bokmål (nb) and Nynorsk (nn). Set this
to 'all' if all languages (also non-Scandinavian) should be considered.
Defaults to the value specified when initialising the benchmarker.
model_language:
The language codes of the languages to include for models. If specified
then this overrides the `language` parameter for model languages.
Defaults to the value specified when initialising the benchmarker.
dataset_language:
The language codes of the languages to include for datasets. If
specified then this overrides the `language` parameter for dataset
languages. Defaults to the value specified when initialising the
benchmarker.
device:
The device to use for benchmarking. Defaults to the value specified when
initialising the benchmarker.
batch_size:
The batch size to use. Defaults to the value specified when initialising
the benchmarker.
raise_errors:
Whether to raise errors instead of skipping the model evaluation.
cache_dir:
Directory to store cached models. Defaults to the value specified when
initialising the benchmarker.
api_key:
The API key to use for a given inference server. Defaults to the value
specified when initialising the benchmarker.
force:
Whether to force evaluations of models, even if they have been
benchmarked already. Defaults to the value specified when initialising
the benchmarker.
verbose:
Whether to output additional output. Defaults to the value specified when
initialising the benchmarker.
trust_remote_code:
Whether to trust remote code when loading models. Defaults to the value
specified when initialising the benchmarker.
use_flash_attention:
Whether to use Flash Attention. Defaults to the value specified when
initialising the benchmarker.
clear_model_cache:
Whether to clear the model cache after benchmarking each model. Defaults
to the value specified when initialising the benchmarker.
evaluate_test_split:
Whether to evaluate the test split of the datasets. Defaults to the
value specified when initialising the benchmarker.
few_shot:
Whether to only evaluate the model using few-shot evaluation. Only
relevant if the model is generative. Defaults to the value specified
when initialising the benchmarker.
num_iterations:
The number of times each model should be evaluated. This is only meant
to be used for power users, and scores will not be allowed on the
leaderboards if this is changed. Defaults to the value specified when
initialising the benchmarker.
only_allow_safetensors:
Whether to only allow models that use the safetensors format. Defaults
to the value specified when initialising the benchmarker.
Returns:
A list of benchmark results.
Raises:
ValueError:
If both `task` and `dataset` are specified.
"""
if task is not None and dataset is not None:
raise ValueError("Only one of `task` and `dataset` can be specified.")
benchmark_config = self._get_updated_benchmark_config(
task=task,
dataset=dataset,
progress_bar=progress_bar,
save_results=save_results,
language=language,
model_language=model_language,
dataset_language=dataset_language,
device=device,
batch_size=batch_size,
raise_errors=raise_errors,
cache_dir=cache_dir,
api_key=api_key,
force=force,
verbose=verbose,
trust_remote_code=trust_remote_code,
use_flash_attention=use_flash_attention,
clear_model_cache=clear_model_cache,
evaluate_test_split=evaluate_test_split,
few_shot=few_shot,
num_iterations=num_iterations,
only_allow_safetensors=only_allow_safetensors,
)
adjust_logging_level(verbose=benchmark_config.verbose)
if benchmark_config.clear_model_cache:
clear_model_cache_fn(cache_dir=benchmark_config.cache_dir)
model_ids = self._prepare_model_ids(model_id=model)
dataset_configs = prepare_dataset_configs(
dataset_names=benchmark_config.datasets
)
current_benchmark_results: list[BenchmarkResult] = list()
for m_id in model_ids:
try:
model_config = get_model_config(
model_id=m_id, benchmark_config=benchmark_config
)
except InvalidModel as e:
logger.info(e.message)
continue
loaded_model: BenchmarkModule | None = None
for dataset_config in dataset_configs:
# Skip if we have already benchmarked this model on this dataset and
# we are not forcing the benchmark
if not benchmark_config.force and model_has_been_benchmarked(
model_id=m_id,
dataset=dataset_config.name,
few_shot=benchmark_config.few_shot,
validation_split=not benchmark_config.evaluate_test_split,
benchmark_results=self.benchmark_results,
):
logger.debug(
f"Skipping benchmarking {m_id} on {dataset_config.pretty_name},"
" as it has already been benchmarked."
)
continue
# We do not re-initialise generative models as their architecture is not
# customised to specific datasets
if model_config.task in GENERATIVE_PIPELINE_TAGS:
initial_logging(
model_config=model_config,
dataset_config=dataset_config,
benchmark_config=benchmark_config,
)
if loaded_model is None:
logger.info("Loading model...")
try:
loaded_model = load_model(
model_config=model_config,
dataset_config=dataset_config,
benchmark_config=benchmark_config,
)
except InvalidModel as e:
if benchmark_config.raise_errors:
raise e
logger.info(e.message)
break
else:
loaded_model.dataset_config = dataset_config
# Benchmark a single model on a single dataset
benchmark_output_or_err = self._benchmark_single(
model=loaded_model,
model_config=model_config,
dataset_config=dataset_config,
benchmark_config=benchmark_config,
)
if (
isinstance(benchmark_output_or_err, Exception)
and benchmark_config.raise_errors
):
raise benchmark_output_or_err
elif isinstance(benchmark_output_or_err, InvalidBenchmark):
if benchmark_config.raise_errors:
raise benchmark_output_or_err
logger.info(
f"{m_id} could not be benchmarked on "
f"{dataset_config.pretty_name}. Skipping. The error message "
f"raised was {benchmark_output_or_err.message!r}."
)
continue
elif isinstance(benchmark_output_or_err, InvalidModel):
if benchmark_config.raise_errors:
raise benchmark_output_or_err
logger.info(benchmark_output_or_err.message)
break
else:
record = benchmark_output_or_err
current_benchmark_results.append(record)
if benchmark_config.save_results:
record.append_to_results(results_path=self.results_path)
if benchmark_config.clear_model_cache:
clear_model_cache_fn(cache_dir=benchmark_config.cache_dir)
# This avoids the following warning at the end of the benchmarking:
# Warning: WARNING: process group has NOT been destroyed before we destruct
# ProcessGroupNCCL. On normal program exit, the application should call
# destroy_process_group to ensure that any pending NCCL operations have
# finished in this process. In rare cases this process can exit before this
# point and block the progress of another member of the process group. This
# constraint has always been present, but this warning has only been added
# since PyTorch 2.4 (function operator())
try:
destroy_process_group()
except AssertionError:
pass
return current_benchmark_results
def _get_updated_benchmark_config(self, **kwargs) -> "BenchmarkConfig":
"""Get an updated benchmark configuration.
Args:
**kwargs:
The new parameters for the benchmark configuration.
Returns:
The updated benchmark configuration.
"""
benchmark_config_params = deepcopy(self.benchmark_config_default_params)
for key, value in kwargs.items():
if value is not None and hasattr(benchmark_config_params, key):
setattr(benchmark_config_params, key, value)
if key == "task":
benchmark_config_params.dataset = None
elif key == "dataset":
benchmark_config_params.task = None
return build_benchmark_config(**benchmark_config_params.model_dump())
def _prepare_model_ids(self, model_id: list[str] | str) -> list[str]:
"""Prepare the model ID(s) to be benchmarked.
Args:
model_id:
The model ID(s) of the models to benchmark.
Returns:
The prepared list of model IDs.
"""
model_ids = [model_id] if isinstance(model_id, str) else model_id
# Reorder the `model_ids` list to include the ones present in the benchmark
# results first
benchmarked_model_ids = [
re.sub(r"\(.+\)", "", record.model).strip()
for record in self.benchmark_results
]
model_ids_sorted = [m_id for m_id in model_ids if m_id in benchmarked_model_ids]
model_ids_sorted += [
m_id for m_id in model_ids if m_id not in benchmarked_model_ids
]
return [m_id.rstrip(" /") for m_id in model_ids_sorted]
def _benchmark_single(
self,
model: "BenchmarkModule | None",
model_config: "ModelConfig",
dataset_config: "DatasetConfig",
benchmark_config: "BenchmarkConfig",
) -> BenchmarkResult | InvalidBenchmark | InvalidModel:
"""Benchmark a single model on a single dataset.
Args:
model:
The model to benchmark.
model_config:
The configuration of the model we are evaluating.
dataset_config:
The configuration of the dataset we are evaluating on.
benchmark_config:
The general benchmark configuration.
Returns:
The benchmark result, or an error if the benchmark was unsuccessful.
"""
if model is None:
initial_logging(
model_config=model_config,
dataset_config=dataset_config,
benchmark_config=benchmark_config,
)
while True:
try:
# Set random seeds to enforce reproducibility of the randomly
# initialised weights
rng = enforce_reproducibility()
if model is None or model_config.model_type != ModelType.GENERATIVE:
logger.info("Loading model...")
model = load_model(
model_config=model_config,
dataset_config=dataset_config,
benchmark_config=benchmark_config,
)
assert model is not None
if dataset_config.task == SPEED:
scores = benchmark_speed(
model=model, benchmark_config=self.benchmark_config
)
else:
bootstrapped_datasets = load_data(
rng=rng,
dataset_config=dataset_config,
benchmark_config=benchmark_config,
)
prepared_datasets = model.prepare_datasets(
datasets=bootstrapped_datasets, task=dataset_config.task
)
if model_config.model_type == ModelType.GENERATIVE:
scores = generate(
model=model,
datasets=prepared_datasets,
model_config=model_config,
dataset_config=dataset_config,
benchmark_config=self.benchmark_config,
)
else:
scores = finetune(
model=model,
datasets=prepared_datasets,
model_config=model_config,
dataset_config=dataset_config,
benchmark_config=benchmark_config,
)
results = log_scores(
dataset_name=dataset_config.pretty_name,
metric_configs=dataset_config.task.metrics,
scores=scores,
model_id=model_config.model_id,
)
record = BenchmarkResult(
dataset=dataset_config.name,
task=dataset_config.task.name,
dataset_languages=[
language.code for language in dataset_config.languages
],
model=model_config.model_id,
results=results,
num_model_parameters=model.num_params,
max_sequence_length=model.model_max_length,
vocabulary_size=model.vocab_size,
merge=model_config.merge,
generative=model_config.model_type == ModelType.GENERATIVE,
generative_type=(
model.generative_type.value
if model.generative_type is not None
else None
),
few_shot=benchmark_config.few_shot,
validation_split=not benchmark_config.evaluate_test_split,
)
logger.debug(f"Results:\n{results}")
return record
except (InvalidBenchmark, InvalidModel) as e:
# If the model ID is not valid then raise an error
model_err_msg = "does not exist on the Hugging Face Hub"
if benchmark_config.raise_errors and model_err_msg in str(e):
raise e
# Otherwise, if the error is due to Hugging Face Hub being down, then
# wait a bit and try again
elif "The Hugging Face Hub seems to be down." in str(e):
wait_time = 30
logger.debug(
"The Hugging Face Hub seems to be down. Retrying in "
f"{wait_time} seconds."
)
sleep(wait_time)
continue
# Otherwise, if the error is due to the MPS fallback not being enabled,
# then raise an error asking the user to enable it
elif "PYTORCH_ENABLE_MPS_FALLBACK" in str(e):
raise RuntimeError(
"The benchmark failed because the environment variable "
"`PYTORCH_ENABLE_MPS_FALLBACK` is not set. Please set this "
"environment variable to `1` and try again."
)
elif benchmark_config.raise_errors:
raise e
return e
def __call__(self, *args, **kwargs) -> list[BenchmarkResult]:
"""Call the benchmarker. See `Benchmarker.benchmark`."""
return self.benchmark(*args, **kwargs)
def model_has_been_benchmarked(
model_id: str,
dataset: str,
few_shot: bool,
validation_split: bool,
benchmark_results: list[BenchmarkResult],
) -> bool:
"""Checks whether a model has already been benchmarked on a dataset.
Args:
model_id:
The model ID.
dataset:
The dataset.
few_shot:
Whether the model was evaluated using few-shot evaluation.
validation_split:
Whether the model was evaluated on the validation split.
benchmark_results:
The benchmark results.
Returns:
Whether the model has already been evaluated on the dataset.
"""
for record in benchmark_results:
same_evaluation = record.model == model_id and record.dataset == dataset
same_validation_split_setting = record.validation_split == validation_split
same_few_shot_setting = record.few_shot == few_shot or not record.generative
if same_evaluation and same_validation_split_setting and same_few_shot_setting:
return True
return False
def adjust_logging_level(verbose: bool, ignore_testing: bool = False) -> int:
"""Adjust the logging level based on verbosity.
Args:
verbose:
Whether to output additional output.
ignore_testing:
Whether to ignore the testing flag.
Returns:
The logging level that was set.
"""
if hasattr(sys, "_called_from_test") and not ignore_testing:
logging_level = logging.CRITICAL
elif verbose:
logging_level = logging.DEBUG
else:
logging_level = logging.INFO
logger.setLevel(logging_level)
return logging_level
def clear_model_cache_fn(cache_dir: str) -> None:
"""Clear the model cache.
Note that this will not remove the stored completions.
Args:
cache_dir:
The path to the cache directory.
"""
model_cache_path = Path(cache_dir) / "model_cache"
model_cache_path.mkdir(parents=True, exist_ok=True)
for model_dir in model_cache_path.iterdir():
if model_dir.is_dir():
for sub_model_dir in model_dir.iterdir():
if sub_model_dir.is_dir():
rmtree(sub_model_dir)
def prepare_dataset_configs(dataset_names: list[str]) -> list["DatasetConfig"]:
"""Prepare the dataset configuration(s) to be benchmarked.
Args:
dataset_names:
The dataset names to benchmark.
Returns:
The prepared list of model IDs.
"""
return [
cfg for cfg in get_all_dataset_configs().values() if cfg.name in dataset_names
]
def initial_logging(
model_config: "ModelConfig",
dataset_config: "DatasetConfig",
benchmark_config: "BenchmarkConfig",
) -> None:
"""Initial logging at the start of the benchmarking process.
Args:
model_config:
The configuration of the model we are evaluating.
dataset_config:
The configuration of the dataset we are evaluating on.
benchmark_config:
The general benchmark configuration.
"""
split_type = "validation" if not benchmark_config.evaluate_test_split else "test"
if model_config.task in GENERATIVE_PIPELINE_TAGS:
if benchmark_config.few_shot:
eval_type = "Few-shot benchmarking"
else:
eval_type = "Zero-shot benchmarking"
else:
eval_type = "Benchmarking"
logger.info(
f"{eval_type} {model_config.model_id} on the {split_type} split of "
f"{dataset_config.pretty_name}"
)
if dataset_config.unofficial:
logger.info(
f"Note that the {dataset_config.name!r} dataset is unofficial, "
"meaning that the resulting evaluation will not be included in the "
"official leaderboard."
)
if benchmark_config.debug:
logger.info(
"Running in debug mode. This will output additional information, as "
"well as store the model outputs in the current directory after each "
"batch. For this reason, evaluation will be slower."
)
|