1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166 | """Generative models using the vLLM inference framework."""
import collections.abc as c
import importlib.util
import itertools as it
import json
import logging
import os
import random
import re
import sys
import typing as t
from functools import partial
from pathlib import Path
from time import sleep
from types import MethodType
import torch
from datasets import DatasetDict
from huggingface_hub import snapshot_download
from pydantic import conlist, create_model
from tqdm.auto import tqdm
from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizer, Trainer
from urllib3.exceptions import RequestError
from ..constants import (
GENERATIVE_PIPELINE_TAGS,
MAX_LOGPROBS,
MERGE_TAGS,
REASONING_MAX_TOKENS,
TASK_GROUPS_USING_LOGPROBS,
TASKS_USING_JSON,
)
from ..data_models import (
BenchmarkConfig,
DatasetConfig,
GenerativeModelOutput,
ModelConfig,
Task,
)
from ..enums import (
BatchingPreference,
GenerativeType,
InferenceBackend,
ModelType,
TaskGroup,
)
from ..exceptions import (
InvalidBenchmark,
InvalidModel,
NeedsEnvironmentVariable,
NeedsExtraInstalled,
)
from ..languages import get_all_languages
from ..task_utils import (
question_answering,
sequence_classification,
text_to_text,
token_classification,
)
from ..types import ExtractLabelsFunction
from ..utils import (
clear_memory,
create_model_cache_dir,
get_end_of_chat_token_ids,
log_once,
should_prompts_be_stripped,
)
from .hf import HuggingFaceEncoderModel, get_model_repo_info, load_hf_model_config
if t.TYPE_CHECKING or importlib.util.find_spec("vllm") is not None:
from vllm import LLM, RequestOutput, SamplingParams
from vllm.lora.request import LoRARequest
from vllm.sampling_params import GuidedDecodingParams
try:
from vllm.model_executor.parallel_utils.parallel_state import (
destroy_model_parallel,
)
except ImportError:
from vllm.distributed.parallel_state import destroy_model_parallel
if t.TYPE_CHECKING or importlib.util.find_spec("ray") is not None:
import ray
logger = logging.getLogger("scandeval")
class VLLMModel(HuggingFaceEncoderModel):
"""A generative model using the vLLM inference framework."""
fresh_model = False
batching_preference = BatchingPreference.ALL_AT_ONCE
high_priority = True
def __init__(
self,
model_config: ModelConfig,
dataset_config: DatasetConfig,
benchmark_config: BenchmarkConfig,
) -> None:
"""Initialise the vLLM model.
Args:
model_config:
The model configuration.
dataset_config:
The dataset configuration.
benchmark_config:
The benchmark configuration.
"""
if (
importlib.util.find_spec("vllm") is None
or importlib.util.find_spec("ray") is None
):
raise NeedsExtraInstalled(extra="generative")
output_scores = dataset_config.task.task_group in TASK_GROUPS_USING_LOGPROBS
model, tokenizer = load_model_and_tokenizer(
model_config=model_config,
benchmark_config=benchmark_config,
output_scores=output_scores,
)
self._model: LLM = model
self._tokenizer: PreTrainedTokenizer = tokenizer
self.end_of_reasoning_token_id = get_end_of_reasoning_token_id(
model=self._model, tokenizer=self._tokenizer
)
# We specify `HuggingFaceEncoderModel` here instead of `VLLMModel`, as we want
# to call the `__init__` method of the `BenchmarkModule` class.
super(HuggingFaceEncoderModel, self).__init__(
model_config=model_config,
dataset_config=dataset_config,
benchmark_config=benchmark_config,
)
self.buffer["output_scores"] = output_scores
self.buffer["instruction_model"] = self._tokenizer.chat_template is not None
if self.model_config.adapter_base_model_id is not None:
adapter_path = snapshot_download(
repo_id=self.model_config.model_id,
cache_dir=Path(self.model_config.model_cache_dir),
)
self.buffer["lora_request"] = LoRARequest(
lora_name="adapter", lora_int_id=1, lora_path=adapter_path
)
@property
def generative_type(self) -> GenerativeType | None:
"""Get the generative type of the model.
Returns:
The generative type of the model, or None if it has not been set yet.
"""
if not hasattr(self, "_tokenizer"):
return None
elif self.end_of_reasoning_token_id is not None:
return GenerativeType.REASONING
elif self._tokenizer.chat_template is not None:
return GenerativeType.INSTRUCTION_TUNED
else:
return GenerativeType.BASE
@property
def extract_labels_from_generation(self) -> ExtractLabelsFunction:
"""The function used to extract the labels from the generated output.
Returns:
The function used to extract the labels from the generated output.
"""
match self.dataset_config.task.task_group:
case (
TaskGroup.SEQUENCE_CLASSIFICATION
| TaskGroup.MULTIPLE_CHOICE_CLASSIFICATION
):
return partial(
sequence_classification.extract_labels_from_generation,
dataset_config=self.dataset_config,
)
case TaskGroup.TEXT_TO_TEXT:
return text_to_text.extract_labels_from_generation
case TaskGroup.TOKEN_CLASSIFICATION:
return partial(
token_classification.extract_labels_from_generation,
dataset_config=self.dataset_config,
)
case TaskGroup.QUESTION_ANSWERING:
return question_answering.extract_labels_from_generation
case _:
raise NotImplementedError(
f"Unsupported task group: {self.dataset_config.task.task_group}."
)
def prepare_dataset(
self, dataset: DatasetDict, task: Task, itr_idx: int
) -> DatasetDict:
"""Prepare the dataset for the model.
This includes things like tokenisation.
Args:
dataset:
The dataset to prepare.
task:
The task to prepare the dataset for.
itr_idx:
The index of the dataset in the iterator.
Returns:
The prepared dataset.
"""
if task.task_group == TaskGroup.QUESTION_ANSWERING:
dataset = dataset.map(
lambda examples: dict(
label=[
dict(
id=id,
answers=dict(
answer_start=answer_dct["answer_start"],
text=[
answer_text.lower()
for answer_text in answer_dct["text"]
],
),
)
for id, answer_dct in zip(examples["id"], examples["answers"])
]
),
batched=True,
load_from_cache_file=False,
keep_in_memory=True,
)
if self.benchmark_config.few_shot:
few_shot_examples = self._extract_few_shot_examples(
dataset=dataset, task=task, itr_idx=itr_idx
)
else:
few_shot_examples = list()
dataset["test"] = dataset["test"].map(
partial(self._apply_prompt, few_shot_examples=few_shot_examples, task=task),
batched=True,
load_from_cache_file=False,
keep_in_memory=True,
)
return dataset
def generate(self, inputs: dict) -> GenerativeModelOutput:
"""Generate outputs from the model.
Args:
inputs:
A batch of inputs to pass through the model.
Returns:
The generated model outputs.
"""
# Define which tokens to use as stopping criteria. We want to use the padding
# token, end-of-sentence token, and a double newline if the model isn't
# instruction tuned (since these separate the few-shot examples in the input in
# this case)
stop_tokens: list[str] = list()
if self.buffer["instruction_model"] is False:
stop_tokens.append("\n\n")
if self._tokenizer.pad_token_id is not None:
stop_tokens.append(self._tokenizer.pad_token)
if self._tokenizer.eos_token_id is not None:
stop_tokens.append(self._tokenizer.eos_token)
if self._tokenizer.pad_token_id is None:
self._tokenizer.pad_token_id = self._tokenizer.eos_token_id
self._tokenizer.pad_token = self._tokenizer.eos_token
if (
self._tokenizer.bos_token_id is not None
and self._tokenizer.pad_token_id is None
):
self._tokenizer.pad_token_id = self._tokenizer.bos_token_id
self._tokenizer.pad_token = self._tokenizer.bos_token
elif (
self._tokenizer.eos_token_id is not None
and self._tokenizer.pad_token_id is None
):
self._tokenizer.pad_token_id = self._tokenizer.eos_token_id
self._tokenizer.pad_token = self._tokenizer.eos_token
elif self._tokenizer.pad_token_id is None:
pad_token_candidates = ["<pad>", "[pad]", "<|endoftext|>", "<|im_end|>"]
pad_token_candidates.extend([c.upper() for c in pad_token_candidates])
for candidate in pad_token_candidates:
if candidate in self._tokenizer.get_vocab():
pad_token_id = self._tokenizer.get_vocab()[candidate]
self._tokenizer.pad_token = candidate
self._tokenizer.pad_token_id = pad_token_id
break
else:
raise InvalidModel(
"Could not find a suitable token to use as a padding token, since "
"the model does not have a BOS, EOS, or padding token, and does "
f"not have any of the following tokens in its vocabulary: "
f"{pad_token_candidates}."
)
assert self._tokenizer.pad_token_id is not None
# Add end of chat token as a stopping token, if it exists
end_of_chat_token_ids = get_end_of_chat_token_ids(tokenizer=self._tokenizer)
if end_of_chat_token_ids is not None:
end_of_chat_token = self._tokenizer.decode(end_of_chat_token_ids).strip()
if end_of_chat_token:
stop_tokens.append(end_of_chat_token)
if self.dataset_config.task in TASKS_USING_JSON:
ner_tag_names = list(self.dataset_config.prompt_label_mapping.values())
keys_and_their_types: dict[str, t.Any] = {
tag_name: (conlist(str, max_length=5), ...)
for tag_name in ner_tag_names
}
pydantic_class = create_model("AnswerFormat", **keys_and_their_types)
schema = pydantic_class.model_json_schema()
guided_decoding = GuidedDecodingParams(
json=schema, backend="outlines", whitespace_pattern=r" ?"
)
else:
guided_decoding = None
# Define the parameters used for vLLM generation
max_tokens: int = (
REASONING_MAX_TOKENS
if self.generative_type == GenerativeType.REASONING
else self.dataset_config.max_generated_tokens
)
sampling_params = SamplingParams(
max_tokens=max_tokens,
logprobs=MAX_LOGPROBS if self.buffer["output_scores"] else None,
temperature=0.0,
stop=[stop_token for stop_token in stop_tokens if stop_token],
guided_decoding=guided_decoding,
)
# If any of the prompts are empty then we need to replace them with a BOS token
# so that the vLLM model can generate from them
prompts: list[str] = inputs["text"]
if any(len(prompt) == 0 for prompt in prompts):
logger.debug("Found empty prompts, replacing with BOS token.")
prompts = [
prompt if len(prompt) > 0 else str(self._tokenizer.bos_token)
for prompt in prompts
]
# Strip the prompts if the model's tokeniser requires it
labels_to_be_generated = list(self.dataset_config.prompt_label_mapping.values())
if len(labels_to_be_generated) == 0:
labels_to_be_generated = ["negative", "positive"]
if not self.buffer.get(
"instruction_model", False
) and should_prompts_be_stripped(
labels_to_be_generated=labels_to_be_generated, tokenizer=self._tokenizer
):
log_once(message="Stripping prompts.", level=logging.DEBUG)
prompts = [prompt.strip() for prompt in prompts]
# Generate sequences using vLLM
input_is_a_test = len(prompts) == 1 and len(set(prompts[0])) == 1
raw_outputs = self._model.generate(
prompts=prompts,
sampling_params=sampling_params,
use_tqdm=(not input_is_a_test),
lora_request=self.buffer.get("lora_request"),
)
completion_ids: list[list[int]] = [
output.outputs[0].token_ids for output in raw_outputs
]
if self.end_of_reasoning_token_id in completion_ids[0]:
completion_ids = [
token_ids[token_ids.index(self.end_of_reasoning_token_id) + 2 :]
if self.end_of_reasoning_token_id in token_ids
else token_ids
for token_ids in completion_ids
]
completions = self._tokenizer.batch_decode(
sequences=[
torch.LongTensor(completion_id) for completion_id in completion_ids
],
skip_special_tokens=True,
)
completions = [completion.strip() for completion in completions]
# Add logprobs scores to the output
if self.buffer["output_scores"]:
scores: list[list[list[tuple[str, float]]]] = [
[
[
(obj.decoded_token, obj.logprob)
for obj in token_logprobs_dict.values()
]
for token_logprobs_dict in raw_output.outputs[0].logprobs
]
for raw_output in raw_outputs
]
scores = [
score_list[
raw_output.outputs[0].token_ids.index(
self.end_of_reasoning_token_id
)
+ 2 :
]
if self.end_of_reasoning_token_id in raw_output.outputs[0].token_ids
else score_list
for raw_output, score_list in zip(raw_outputs, scores)
]
output = GenerativeModelOutput(sequences=completions, scores=scores)
else:
output = GenerativeModelOutput(sequences=completions)
return output
@classmethod
def model_exists(
cls, model_id: str, benchmark_config: BenchmarkConfig
) -> bool | NeedsExtraInstalled | NeedsEnvironmentVariable:
"""Check if a model exists.
Args:
model_id:
The model ID.
benchmark_config:
The benchmark configuration.
Returns:
Whether the model exists, or an error describing why we cannot check
whether the model exists.
"""
using_api = (
benchmark_config.api_base is not None
or benchmark_config.api_version is not None
)
if using_api:
return False
model_id, revision = (
model_id.split("@") if "@" in model_id else (model_id, "main")
)
model_info = get_model_repo_info(
model_id=model_id, revision=revision, benchmark_config=benchmark_config
)
return (
model_info is not None
and model_info.pipeline_tag in GENERATIVE_PIPELINE_TAGS
)
@classmethod
def get_model_config(
cls, model_id: str, benchmark_config: BenchmarkConfig
) -> ModelConfig:
"""Fetch the model configuration.
Args:
model_id:
The model ID.
benchmark_config:
The benchmark configuration.
Returns:
The model configuration.
"""
model_id, revision = (
model_id.split("@") if "@" in model_id else (model_id, "main")
)
model_info = get_model_repo_info(
model_id=model_id, revision=revision, benchmark_config=benchmark_config
)
if model_info is None:
raise InvalidModel(f"The model {model_id!r} could not be found.")
language_mapping = get_all_languages()
language_codes = list(language_mapping.keys())
model_config = ModelConfig(
model_id=model_id,
revision=revision,
task=model_info.pipeline_tag,
languages=[
language_mapping[tag]
for tag in model_info.tags
if tag in language_codes
],
merge=any(tag in model_info.tags for tag in MERGE_TAGS),
inference_backend=InferenceBackend.VLLM,
model_type=ModelType.GENERATIVE,
fresh=False,
model_cache_dir=create_model_cache_dir(
cache_dir=benchmark_config.cache_dir, model_id=model_id
),
adapter_base_model_id=model_info.adapter_base_model_id,
)
return model_config
def _extract_few_shot_examples(
self, dataset: DatasetDict, task: Task, itr_idx: int
) -> list[dict[str, t.Any]]:
"""Extract few-shot examples from a dataset.
This will always extract the examples from the training split.
We ensure that the few-shot examples are unique by picking them one at a time.
Args:
dataset:
The dataset to extract the few-shot examples from.
task:
The task that is being benchmarked.
itr_idx:
The index of the dataset in the iterator.
Returns:
The few-shot examples.
"""
random_seed = 4242 + itr_idx
num_few_shots = self.dataset_config.num_few_shot_examples
few_shot_examples: list[dict[str, t.Any]] = list()
shuffled_train = dataset["train"].shuffle(seed=random_seed)
match task.task_group:
case (
TaskGroup.SEQUENCE_CLASSIFICATION
| TaskGroup.MULTIPLE_CHOICE_CLASSIFICATION
):
labels = it.cycle(self.dataset_config.labels)
while (
len(few_shot_examples) < num_few_shots and len(shuffled_train) > 0
):
label = next(labels)
possible_examples = shuffled_train.filter(
lambda x: x["label"].lower() == label.lower()
)
if len(possible_examples) == 0:
continue
example = possible_examples.select(range(1))[0]
few_shot_examples.append(example)
shuffled_train = shuffled_train.filter(
lambda x: x["text"] != example["text"]
)
case TaskGroup.TEXT_TO_TEXT:
while (
len(few_shot_examples) < num_few_shots and len(shuffled_train) > 0
):
example = shuffled_train.select(range(1))[0]
few_shot_examples.append(example)
shuffled_train = shuffled_train.filter(
lambda x: x["text"] != example["text"]
)
case TaskGroup.TOKEN_CLASSIFICATION:
labels = it.cycle(
[
label.lower()
for label in self.dataset_config.labels
if label.lower().startswith("b-")
]
)
while (
len(few_shot_examples) < num_few_shots and len(shuffled_train) > 0
):
label = next(labels)
possible_examples = shuffled_train.filter(
lambda x: label in [tag.lower() for tag in x["labels"]]
)
if len(possible_examples) == 0:
continue
example = possible_examples.select(range(1))[0]
few_shot_examples.append(example)
shuffled_train = shuffled_train.filter(
lambda x: x["tokens"] != example["tokens"]
)
case TaskGroup.QUESTION_ANSWERING:
# Locate the maximum number of tokens that constitutes a short example
for max_num_tokens in [512, 1024, 2048, 4096, 8192]:
train_with_short_examples = dataset["train"].filter(
lambda example: len(example["context"]) < max_num_tokens
)
num_short_examples = len(train_with_short_examples)
if num_short_examples >= self.dataset_config.num_few_shot_examples:
break
else:
raise InvalidBenchmark(
"Could not find enough short examples for few-shot learning."
)
shuffled_train = train_with_short_examples.shuffle(seed=random_seed)
while (
len(few_shot_examples) < num_few_shots and len(shuffled_train) > 0
):
example = shuffled_train.select(range(1))[0]
few_shot_examples.append(example)
shuffled_train = shuffled_train.filter(
lambda x: x["context"] != example["context"]
)
case _:
raise NotImplementedError(f"Unsupported task group: {task.task_group}.")
random.seed(random_seed)
random.shuffle(few_shot_examples)
return few_shot_examples
def _apply_prompt(
self,
examples: dict[str, t.Any],
few_shot_examples: list[dict[str, t.Any]],
task: Task,
) -> dict[str, t.Any]:
"""Apply prompt template to an example, potentially with few-shot examples.
Args:
examples:
The examples to apply the few-shot examples to.
few_shot_examples:
The few-shot examples to apply.
task:
The task that is being benchmarked.
Returns:
The example with the few-shot examples applied.
"""
def create_prompt(**kwargs) -> tuple[str, str]:
"""Create a prompt from the given keyword arguments.
Args:
kwargs:
The keyword arguments to use in the prompt.
Returns:
A pair (prompt, label), where "label" is an empty string if the model is
not instruction tuned (as in this case it is included in the prompt).
"""
label_key = "label" if "label" in kwargs else "target_text"
label = kwargs.pop(label_key)
assert (
label is not None
), f"Found a None label for the prompt: {kwargs}. This should not happen."
label_mapping = self.dataset_config.prompt_label_mapping
label = label_mapping.get(label, label)
if self.buffer["instruction_model"]:
prompt = self.dataset_config.instruction_prompt.format(**kwargs)
return prompt, label
else:
kwargs[label_key] = label
return self.dataset_config.prompt_template.format(**kwargs), ""
match task.task_group:
case (
TaskGroup.SEQUENCE_CLASSIFICATION
| TaskGroup.MULTIPLE_CHOICE_CLASSIFICATION
):
few_shot_sections = [
create_prompt(
text=example["text"].replace("\n", " ").strip(),
label=example["label"].replace("\n", " ").strip(),
)
for example in few_shot_examples
]
new_sections = [
create_prompt(text=text.replace("\n", " ").strip(), label="")
for text in examples["text"]
]
case TaskGroup.TEXT_TO_TEXT:
few_shot_sections = [
create_prompt(
text=example["text"].replace("\n", " ").strip(),
target_text=example["target_text"].replace("\n", " ").strip(),
)
for example in few_shot_examples
]
new_sections = [
create_prompt(text=text.replace("\n", " ").strip(), target_text="")
for text in examples["text"]
]
case TaskGroup.TOKEN_CLASSIFICATION:
def create_label(example: dict) -> str:
prompt_labels = self.dataset_config.prompt_label_mapping.values()
labels: dict[str, list[str]] = {
prompt_label: list() for prompt_label in prompt_labels
}
for token, label in zip(example["tokens"], example["labels"]):
label = label.lower()
if label == "o":
continue
prompt_label = self.dataset_config.prompt_label_mapping[label]
if label.startswith("b-"):
labels[prompt_label].append(token)
elif label.startswith("i-"):
labels[prompt_label][-1] += " " + token
return json.dumps(labels, ensure_ascii=False)
few_shot_sections = [
create_prompt(
text=" ".join(example["tokens"]).replace("\n", " ").strip(),
label=create_label(example=example),
)
for example in few_shot_examples
]
new_sections = [
create_prompt(
text=" ".join(tokens).replace("\n", " ").strip(), label=""
)
for tokens in examples["tokens"]
]
case TaskGroup.QUESTION_ANSWERING:
few_shot_sections = [
create_prompt(
text=example["context"].replace("\n", " ").strip(),
question=example["question"].replace("\n", " ").strip(),
label=example["answers"]["text"][0].replace("\n", " "),
)
for example in few_shot_examples
]
new_sections = [
create_prompt(
text=context.replace("\n", " ").strip(),
question=question.replace("\n", " ").strip(),
label="",
)
for context, question in zip(
examples["context"], examples["question"]
)
]
case _:
raise NotImplementedError(f"Unsupported task group: {task.task_group}.")
if self.buffer["instruction_model"]:
few_shot_messages = [
dict(role=role, content=content)
for prompt, label in few_shot_sections
for role, content in [("user", prompt), ("assistant", label)]
]
messages_list = [
few_shot_messages + [dict(role="user", content=prompt)]
for prompt, _ in new_sections
]
# Pick the chat template that matches the language of the dataset, if such a
# template exists
chat_template: str | None = None
if isinstance(self._tokenizer.chat_template, dict):
language_codes = [
language.code for language in self.dataset_config.languages
]
for name, candidate_template in self._tokenizer.chat_template.items():
if name.lower() in language_codes:
chat_template = candidate_template
log_once(
f"Using the {name!r} chat template for the tokenizer.",
level=logging.DEBUG,
)
break
texts = [
self._tokenizer.apply_chat_template(
conversation=messages,
tokenize=False,
add_generation_prompt=True,
chat_template=chat_template,
)
for messages in messages_list
]
examples["text"] = texts
else:
prompt_prefix = ""
if self.dataset_config.prompt_prefix:
prompt_prefix = self.dataset_config.prompt_prefix + "\n\n"
few_shot_prompt = "\n\n".join([prompt for prompt, _ in few_shot_sections])
if few_shot_prompt:
few_shot_prompt += "\n\n"
examples["text"] = [
prompt_prefix + few_shot_prompt + new_prompt
for new_prompt, _ in new_sections
]
return examples
@property
def data_collator(self) -> c.Callable[[list[t.Any]], dict[str, t.Any]]:
"""The data collator used to prepare samples during finetuning.
Returns:
The data collator.
"""
raise NotImplementedError(
"The `data_collator` property has not been implemented for vLLM models."
)
@property
def trainer_class(self) -> t.Type["Trainer"]:
"""The Trainer class to use for finetuning.
Returns:
The Trainer class.
"""
raise NotImplementedError(
"The `trainer_class` property has not been implemented for vLLM models."
)
def load_model_and_tokenizer(
model_config: ModelConfig, benchmark_config: BenchmarkConfig, output_scores: bool
) -> "tuple[LLM, PreTrainedTokenizer]":
"""Load the model and tokenizer.
Args:
model_config:
The model configuration.
benchmark_config:
The benchmark configuration.
output_scores:
Whether to output scores.
Returns:
The loaded model and tokenizer.
"""
# Prefer base model ID if the model is an adapter - the adapter will be added on
# during inference in this case
model_id = model_config.adapter_base_model_id or model_config.model_id
hf_model_config = load_hf_model_config(
model_id=model_id,
num_labels=0,
id2label=dict(),
label2id=dict(),
revision=model_config.revision,
model_cache_dir=model_config.model_cache_dir,
api_key=benchmark_config.api_key,
trust_remote_code=benchmark_config.trust_remote_code,
run_with_cli=benchmark_config.run_with_cli,
)
quantization = None
if hasattr(hf_model_config, "quantization_config"):
quantization = hf_model_config.quantization_config.get("quant_method")
# The quantised models require extra dependencies
if quantization == "gptq" and (
importlib.util.find_spec("auto_gptq") is None
or importlib.util.find_spec("optimum") is None
):
raise NeedsExtraInstalled(extra="quantization")
if quantization == "awq" and importlib.util.find_spec("awq") is None:
raise NeedsExtraInstalled(extra="quantization")
dtype: str | torch.dtype = "auto"
if quantization is not None and hf_model_config.torch_dtype != torch.float16:
logger.info(
"You are loading a quantized model with dtype "
f"{hf_model_config.torch_dtype}, which vLLM does not support. Setting "
"dtype to float16 instead."
)
dtype = torch.float16
if model_config.adapter_base_model_id is not None:
download_dir = str(Path(model_config.model_cache_dir) / "base_model")
else:
download_dir = str(model_config.model_cache_dir)
potential_max_model_length_config_names = [
"max_position_embeddings",
"max_sequence_length",
"model_max_length",
"sliding_window",
"sliding_window_size",
"n_positions",
]
true_max_model_len_candidates: list[int] = list()
for config_name in potential_max_model_length_config_names:
if hasattr(hf_model_config, config_name):
model_len = getattr(hf_model_config, config_name)
if model_len is not None:
true_max_model_len_candidates.append(model_len)
if len(true_max_model_len_candidates) > 0:
true_max_model_len = min(true_max_model_len_candidates)
else:
true_max_model_len = 5_000
clear_vllm()
executor_backend = "ray" if torch.cuda.device_count() > 1 else "mp"
try:
model = LLM(
model=model_id,
tokenizer=model_id,
gpu_memory_utilization=0.95,
max_model_len=min(true_max_model_len, 5_000),
download_dir=download_dir,
trust_remote_code=benchmark_config.trust_remote_code,
revision=model_config.revision,
seed=4242,
distributed_executor_backend=executor_backend,
tensor_parallel_size=torch.cuda.device_count(),
disable_custom_all_reduce=True,
quantization=quantization,
dtype=dtype,
enforce_eager=True,
max_logprobs=MAX_LOGPROBS if output_scores else None,
# TEMP: Prefix caching isn't supported with sliding window in vLLM yet,
# so we disable it for now
enable_prefix_caching=False,
enable_lora=model_config.adapter_base_model_id is not None,
max_lora_rank=256,
)
except (ValueError, OSError) as e:
if "awaiting a review from the repo authors" in str(e):
raise InvalidModel(
f"The model {model_id!r} is awaiting a review from the repository "
"authors. Please try again later."
)
elif "trust_remote_code" in str(e):
raise InvalidModel(
f"Loading the model {model_id!r} needs to trust remote code. "
"If you trust the suppliers of this model, then you can enable "
"this by setting the `--trust-remote-code` flag."
)
raise InvalidModel(
f"The model {model_id!r} could not be loaded. The error was {e!r}."
)
model._run_engine = MethodType(_run_engine_with_fixed_progress_bars, model)
model.config = hf_model_config
tokenizer = load_tokenizer(
model_id=model_config.model_id,
revision=model_config.revision,
adapter_base_model_id=model_config.adapter_base_model_id,
trust_remote_code=benchmark_config.trust_remote_code,
model_max_length=true_max_model_len,
model_cache_dir=model_config.model_cache_dir,
token=benchmark_config.api_key or os.getenv("HUGGINGFACE_API_KEY") or True,
)
return model, tokenizer
def load_tokenizer(
model_id: str,
revision: str,
adapter_base_model_id: str | None,
trust_remote_code: bool,
model_max_length: int,
model_cache_dir: str,
token: str | bool,
) -> "PreTrainedTokenizer":
"""Load the tokenizer.
Args:
model_id:
The model identifier.
revision:
The revision of the model.
adapter_base_model_id:
The base model ID for the adapter model. Can be None if the model is not an
adapter model.
trust_remote_code:
Whether to trust remote code.
model_max_length:
The maximum length of the model.
model_cache_dir:
The cache directory for the model.
token:
The Hugging Face API token.
Returns:
The loaded tokenizer.
"""
config = AutoConfig.from_pretrained(
adapter_base_model_id or model_id,
revision=revision,
cache_dir=model_cache_dir,
token=token,
trust_remote_code=trust_remote_code,
)
num_retries = 5
for _ in range(num_retries):
try:
tokenizer = AutoTokenizer.from_pretrained(
model_id,
use_fast=True,
verbose=False,
trust_remote_code=trust_remote_code,
padding_side="left",
truncation_side="left",
model_max_length=model_max_length,
config=config,
token=token,
)
break
except (json.JSONDecodeError, OSError, TypeError) as e:
if adapter_base_model_id is None or model_id == adapter_base_model_id:
raise InvalidModel(
f"Could not load tokenizer for model {model_id!r}. The error was "
f"{str(e)}."
)
logger.debug(
f"Could not load tokenizer for {model_id!r}. Falling back to "
f"{adapter_base_model_id!r}."
)
model_id = adapter_base_model_id
except (TimeoutError, RequestError):
logger.info(f"Couldn't load tokenizer for {model_id!r}. Retrying.")
sleep(5)
continue
else:
raise InvalidModel(
f"Could not load tokenizer for model {model_id!r} after {num_retries} "
"attempts."
)
if tokenizer.pad_token_id is None:
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
def _run_engine_with_fixed_progress_bars(
self: "LLM", use_tqdm: bool
) -> list["RequestOutput"]:
if use_tqdm:
num_requests = self.llm_engine.get_num_unfinished_requests()
pbar = tqdm(
total=num_requests, leave=False, disable=hasattr(sys, "_called_from_test")
)
else:
pbar = None
# Run the engine.
outputs: list["RequestOutput"] = list()
while self.llm_engine.has_unfinished_requests():
step_outputs = self.llm_engine.step()
for output in step_outputs:
if output.finished:
outputs.append(output)
if pbar is not None:
pbar.update(1)
if pbar is not None:
pbar.close()
# Sort the outputs by request ID. This is necessary because some requests may be
# finished earlier than its previous requests.
outputs = sorted(outputs, key=lambda x: int(x.request_id))
return outputs
def clear_vllm() -> None:
"""Clear the GPU memory used by the vLLM model, enabling re-initialisation."""
try:
destroy_model_parallel()
except ImportError:
pass
clear_memory()
if ray.is_initialized():
ray.shutdown()
def get_end_of_reasoning_token_id(
model: "LLM", tokenizer: "PreTrainedTokenizer"
) -> int | None:
"""Get the end of reasoning token ID for a generative model.
This assumes that the reasoning token is of the form <X> and that the end of
reasoning token is </X> (for X being any string without spaces).
Args:
model:
The vLLM model.
tokenizer:
The tokenizer.
Returns:
The end of reasoning token ID, or None if it could not be found.
"""
if tokenizer.chat_template is None:
prompt = "What is your name?"
else:
prompt = tokenizer.apply_chat_template(
conversation=[dict(role="user", content="What is your name?")],
add_generation_prompt=True,
tokenize=False,
)
# Generate a completion and remove the BOS token from it, to not confuse it with the
# potential reasoning token
completion = (
model.generate(
prompts=[prompt],
sampling_params=SamplingParams(max_tokens=3, temperature=0.0),
use_tqdm=False,
)[0]
.outputs[0]
.text
)
if tokenizer.bos_token is not None:
completion = completion.replace(tokenizer.bos_token, "").strip()
# If it doesn't contain a reasoning token, we can't find the end of reasoning token
match = re.search(pattern=r"<\w+>", string=completion)
if match is None:
log_once(
message=(
"Could not find a reasoning token, so assuming the model is not a "
"reasoning model."
),
level=logging.DEBUG,
)
return None
# Check that the found reasoning token and its associated end-of-reasoning tokens
# are both special tokens
reasoning_token = match.group()
end_of_reasoning_token = f"</{reasoning_token[1:-1]}>"
special_tokens = [
decoder_token.content
for decoder_token in tokenizer.added_tokens_decoder.values()
]
special_tokens.extend(
[encoder_token for encoder_token in tokenizer.added_tokens_encoder.keys()]
)
special_tokens.extend(tokenizer.all_special_tokens)
if (
reasoning_token not in special_tokens
or end_of_reasoning_token not in special_tokens
):
log_once(
message=(
f"Detected reasoning token {reasoning_token!r} and end of reasoning "
f"token {end_of_reasoning_token!r}, but one of them is not registered "
"as a special token, so assuming it is not a real reasoning token."
),
level=logging.DEBUG,
)
return None
log_once(
message=f"Detected reasoning token {reasoning_token!r}.", level=logging.DEBUG
)
# Encode the end of reasoning token and return its ID
end_of_reasoning_token_id = tokenizer.encode(
text=end_of_reasoning_token, add_special_tokens=False
)[0]
return end_of_reasoning_token_id
|