Skip to content

scandeval.task_utils.multiple_choice_classification

source module scandeval.task_utils.multiple_choice_classification

Utility functions related to the multiple-choice classification task group.

Classes

Functions

source class MultipleChoiceClassificationTrainer()

Bases : Trainer

Trainer subclass for question answering tasks.

Methods

  • evaluate Evaluate the model on the given dataset.

source method MultipleChoiceClassificationTrainer.evaluate(eval_dataset: Dataset | None = None, ignore_keys: list[str] | None = None, metric_key_prefix: str = 'eval')dict[str, float] | None

Evaluate the model on the given dataset.

Parameters

  • eval_dataset : Dataset | None

    The dataset to evaluate on. If None, then use the stored evaluation dataset.

  • ignore_keys : list[str] | None

    The keys to ignore when computing the metrics.

  • metric_key_prefix : str

    The prefix to use for the metric keys.

Returns

  • dict[str, float] | None The metrics computed on the evaluation dataset.

source prepare_examples(examples: BatchEncoding, tokenizer: PreTrainedTokenizer)BatchEncoding

Prepare the features.

Parameters

  • examples : BatchEncoding

    The examples to prepare.

  • tokenizer : PreTrainedTokenizer

    The tokenizer to use to prepare the examples.

Returns

  • BatchEncoding The prepared examples.

source postprocess_predictions_and_labels(predictions: np.ndarray, dataset: Dataset)tuple[Predictions, Labels]

Postprocess the predictions and labels.

Parameters

  • predictions : np.ndarray

    The model predictions, of shape (num_examples, 2).

  • dataset : Dataset

    The dataset containing the examples.

Returns

  • tuple[Predictions, Labels] The postprocessed predictions and labels.