Skip to content

scandeval.model_cache

source module scandeval.model_cache

ModelCache class for caching model outputs.

Classes

Functions

source class ModelCache(cache_name: str, max_generated_tokens: int)

A cache for model outputs.

Initialize the model output cache.

Attributes

  • model_cache_dir

    The directory to store the cache in.

  • cache_path

    The path to the cache file.

  • cache

    The model output cache.

  • max_generated_tokens

    The maximum number of tokens to generate for each example.

Parameters

  • model_cache_dir : Path

    The directory to store the cache in.

  • cache_name : str

    The name of the cache file.

  • max_generated_tokens : int

    The maximum number of tokens to generate for each example.

Methods

  • load Load the model output cache.

  • save Save the model output cache to disk.

  • remove Remove the cache from memory and delete it from disk.

  • add_to_cache Add the model input/output to the cache.

source method ModelCache.load()None

Load the model output cache.

source method ModelCache.save()None

Save the model output cache to disk.

source method ModelCache.remove()None

Remove the cache from memory and delete it from disk.

source method ModelCache.add_to_cache(model_inputs: dict, model_output: GenerativeModelOutput)None

Add the model input/output to the cache.

Parameters

source split_dataset_into_cached_and_non_cached(dataset: Dataset, cache: ModelCache)tuple[Dataset, Dataset]

Split a dataset into a cached and non-cached part.

Parameters

  • dataset : Dataset

    The dataset to split.

  • cache : ModelCache

    The model output cache.

Returns

  • tuple[Dataset, Dataset] The cached and non-cached parts of the dataset.

source load_cached_model_outputs(cached_dataset: Dataset, cache: ModelCache)GenerativeModelOutput

Load the cached model outputs.

Parameters

  • cached_dataset : Dataset

    The dataset containing the cached examples.

  • cache : ModelCache

    The model output cache.

Returns