scandeval.enums
source module scandeval.enums
Enums used in the project.
Classes
-
AutoStrEnum — StrEnum where auto() returns the field name in lower case.
-
Device — The compute device to use for the evaluation.
-
InferenceBackend — The backend used for model inference.
-
ModelType — The type of a model.
-
GenerativeType — The type of a generative model.
-
DataType — The data type of the model weights.
-
BatchingPreference — The preference for batching.
-
TaskGroup — The overall task group of a task.
source enum AutoStrEnum()
Bases : str, Enum
StrEnum where auto() returns the field name in lower case.
Bases : AutoStrEnum
The compute device to use for the evaluation.
Attributes
-
CPU —
CPU device.
-
MPS —
MPS GPU, used in M-series MacBooks.
-
CUDA —
CUDA GPU, used with NVIDIA GPUs.
source enum InferenceBackend()
Bases : AutoStrEnum
The backend used for model inference.
Attributes
-
TRANSFORMERS —
Hugging Face
transformers
library. -
VLLM —
VLLM library.
-
LITELLM —
LiteLLM library.
-
NONE —
No inference backend used (e.g., for human evaluation).
Bases : AutoStrEnum
The type of a model.
Attributes
-
ENCODER —
An encoder (i.e., BERT-style) model.
-
GENERATIVE —
A generative model. Can be either decoder or encoder-decoder (aka seq2seq).
-
HUMAN —
Human evaluator.
source enum GenerativeType()
Bases : AutoStrEnum
The type of a generative model.
Attributes
-
BASE —
A base (i.e., pretrained) generative model.
-
INSTRUCTION_TUNED —
An instruction-tuned generative model.
-
REASONING —
A generative reasoning model.
Bases : AutoStrEnum
The data type of the model weights.
Attributes
-
FP32 —
32-bit floating point.
-
FP16 —
16-bit floating point.
-
BF16 —
16-bit bfloat.
source enum BatchingPreference()
Bases : AutoStrEnum
The preference for batching.
Attributes
-
NO_PREFERENCE —
No preference for batching.
-
SINGLE_SAMPLE —
Single sample batching.
-
ALL_AT_ONCE —
All samples at once batching.
Bases : AutoStrEnum
The overall task group of a task.
Attributes
-
SEQUENCE_CLASSIFICATION —
Classification of documents.
-
MULTIPLE_CHOICE_CLASSIFICATION —
Classification of documents with multiple-choice options.
-
TOKEN_CLASSIFICATION —
Token-level classification.
-
QUESTION_ANSWERING —
Extractive question answering.
-
TEXT_TO_TEXT —
Text-to-text generation.
-
SPEED —
Speed benchmark.